Addendum to the

Apple Pascal

Language Reference Manual

TABLE OF CONTENTS

Introduction
One-Drive Startup
Chaining Programs
The SETCHAIN Procedure
The SETCVAL Procedure
The GETCVAL Procedure
SWAPON and SWAPOFF
An Example of Chaining
The "V" Option
The "Swapping" Optiom
Strings
Turtlegraphics
Error Messages
Memory Space for Compiler
File Space for Compiler
Program Segmentation
Segments
9 The Segment Dictionary
10 The Run-Time Segment Table
10 Segment Numbers
11 The "Next Segment" Option
12 Loading of SEGMENT Procedures and Functions
13 Loading of UNIT Segments
14 The '"Noload" Option
15 The "Resident" Option

00 00 00 ~J = = O O Oh Ld L L0 B S =

APPLE Part #@31-01Q1-p@

INTRODUCTION

This document 1s an addendum to the Apple Pascal Language Reference
Manual. Most of the items described are features that have been added

to the system since the printing of the manual. Corrections to the
manual are also included.

ONE-DRIVE STARTUP

The one-drive startup described on pages 148-15@ of the Apple Pascal
Language Reference Manual is not correct. Instead a one-drive startup
works as follows:

Insert the diskette marked APPLE3: in the disk drive. Close the door
to the disk drive and turn on the computer. The message

APPLE II

will appear on the screen and the disk drive’s IN USE light will come
on. The disk drive emits a whirring sound, lights up for a second or
so with a screenful of black at-signs (@) on a white background, and
then goes black again. HNext the following message is displayed:

INSERT BOOT DISK WITH SYSTEM.PASCAL
ON IT. THEN PRESS RESET

To complete the booting process, insert APPLE@: and then press RESET.
After about 1§ seconds, this message appears in the center of the
screen:

WELCOME APPLE@, TO APPLE II PASCAL 1.1
BASED ON USCD PASCAL IT.1
CURRENT DATE IS L4-AUG-8(

(C) APPLE COMPUTER INC. 1979, 198¢
(C) U.C. REGENTS 1979

The date may be different. The top of the screen will contain the
Command level prompt line.

LANGUAGE REFERENCE ADDENDUM 4

CHAINING PROGRAMS

Version 1.1 provides a new UNIT called CHAINSTUFF 1in the
SYSTEM.LIBRARY file. This unit allows one program to "chain to"
another program. This means that the first program specifies the
second one by giving its filename; the system then executes the second
program as soon as the first one terminates normally.

The CHAINSTUFF unit also allows the first program to pass a STRING
value to the second program; note that this allows almost any
information to be passed, since the string can be a filename and can
thus specify a communications file containing almost anything.
CHAINSTUFF also allows a program to turn the system swapping feature
on and off. (System swapping 1s a new feature described in the
Addendum to the Apple Pascal Operating System Reference Manual.)

CHAINSTUFF provides these capabilities in the form of five procedures
named SETCHAIN, SETCVAL, GETCVAL, SWAPON, and SWAPOFF. To use these

procedures, the program must have a USES declaration immediately after
the program heading:

PROGRAM STARTER;
USES CHAINSTUFF;

The SYSTEM.LIBRARY file must be on line when the program is compiled
and executed.

THE SETCHAIN PROCEDURE

The SETCHAIN procedure call has the form
SETCHAIN (NEXTFILE)

where NEXTFILE is a STRING value (up to 23 characters). It should be
either the name of a code file, or the name of an exec file with the

prefix EXEC/. As soon as the program terminates normally, the system
will proceed to execute the file whose name is the value of NEXTFILE.

The file is executed exactly as If the X(ecute command had been used;

thus it is not necessary to supply the suffix .CODE for a code file or
+TEXT for an esxec file.

2 LANGUAGE REFERENCE ADDENDUM

If the program is halted because of any run-time error, the chaining
does not occur. Note that this Includes a halt caused by the HALT
procedure. However a termination caused by the EXIT procedure is
considered a normal termination and the chaining will work.

THE SETCVAL PROCEDURE

The SETCVAL procedure call has the form
SETCVAL (MESSAGE)

where MESSAGE is a STRING value (up to 8@ characters). SETCVAL stores
the MESSAGE in a system location called CVAL,; where it can be picked
up by another program.

THE GETCVAL PROCEDURE

The GETCVAL procedure call has the form
GETCVAL (MESSAGE)

where MESSAGE is a STRING variable whose value is altered by GETCVAL.
GETCVAL picks up the current wvalue of CVAL from the system and stores
it in the MESSAGE variable. Note that if CVAL has not been set by
another program (using SETCVAL), then the walue of CVAL is a
zero-length string. Once CVAL has been set, it remalns set to the
same STRING value until it is changed or the system is reinitialized
or rebooted.

SWAPON AND SWAPOFF

These procedures have no parameters. They allow a program to turn the
system swapping feature on or off upon termination of the program
(before chaining to another program).

AN EXAMPLE OF CHAINING

Suppose that a diskette named GAMES: contains a collection of game
programs whose code files have the following names:

LANGUAGE REFERENCE ADDENDUM 3

CHESS.CODE
CHECKERS.CODE
BLASTOFF.CODE
GOMOKU. CODE

BEGAMMON . CODE
BLACKJCK.CODE
HEARTS . CODE

SPROUTS.CODE

The user could use the Filer to display a list of filenames on the
GAMES: diskette, then return to the Command level and use X(ecute to
execute a selected program. Instead, however, you can write a
"front-end" program to display a menu of all the available games; the

user chooses one by typing a number, and the front-end program chains
to the selected game program:

PROGRAM FRONT;
USES CHAINSTUFF;

VAR GAMENUM: INTEGER;

BEGIN
(*Display a greeting*)
WRITELN(‘WELCOME TO GAMES!”);
WRITELN;
(*Display the menu*)
WRITELN('SELECT A GAME FROM THE LIST BY TYPING ITS NUMBER: ");

WRITELN;

WRITELN(’1 —- CHESS”):
WRITELN(’2 — CHECKERS’);
WRITELN{'3 = BLASTOFF');
WRITELN(4 — GOMOKU’);
WRITELN('5 = BACKGAMMON');
WRITELN('6 — BLACKJACK’);
WRITELN('7 = HEARTS");
WRITELN('8 = SPROUTS’);
WRITELN:

(*Get a number from the user*)
WRITE('TYPE A NUMBER FROM 1 THROUGH B, THEN PRESS RETURN: b T
READLN(GAMENUM) ;
(*™ake sure the number is valid*)
WHILE NOT (GAMENUM IN [l..8]) DO BEGIN
WRITE(‘'NUMBER MUST BE FROM 1 THROUGH 8 — TRY AGAIN: *);
READLN{GAMENUM)
END;

4 |LANGUAGE REFERENCE ADDENDUM

(*Set chaining to filename of selected game*)
CASE GAMENUM OF
SETCHAIN("GAMES:CHESS');
SETCHAIN(“GAMES:CHECKERS');
SETCHAIN("GAMES : BLASTOFF');
SETCHAIN(“GAMES : GOMOKU");
SETCHAIN('GaHES:BKGAHHDN');
SETCHAIN('GAHES:HL&CKJGK');
SETCHAIN("GAMES : HEARTS ');
SETCHAIN(‘GAMES : SPROUTS ")

—
- e

Songuswr

m
&m
-

There are several advantages to this. For one thing, the GAMES:
diskette may have many other files besides the actual game programs,
and this could be confusing to the user. For another, the FRONT
program menu gives full and correct names for the games, since it is
not limited to 8-character names; thus it lists BACKGAMMON instead of
BEGAMMON .

Many game programs ask the user to type in her name, so it can be used
in messages and prompts from the program. You could also have the
FRONT program get the user’s name and pass it to the selected game
program. To do this, the FRONT program can declare a STRING variable,
NAME, and then include the following lines either just before or Jjust
after the CASE statement:

(*Get user’s name and store it in CVAL*)
WRITE(“TYPE YOUR NAME, PLEASE: ');
READLN(NAME);

SETCVAL(NAME)

Now a game program that uses the user’s name can obtain it by having
its own STRING variable named (for example) UNAME, and then calling
GETCVAL:

GETCVAL (UNAME)
Ineldentally, if the FRONT program’s codefile 1s placed on the boot

diskette and given the name SYSTEM.STARTUP, the FRONT program will be
tun automatlically as soon as the system is started.

LANGUAGE REFERENCE ADDENDUM 5§

THE “V” OPTION

When a procedure or function has a VAR parameter of type STRING, the
actual parameter in each call to the procedure or function is checked
by the Compiler to make sure that its maximum length is not less than
the maximum length of the formal parameter. In the previous version
of the Compiler, there was no such checking.

This checking is controlled by the V option:
Default value: v+
(*§V+A) Turns checking on.
(*V-%) Turns checking off,

The U= option alsc turns this checking feature off. Note that if
checking is off and the maximum length of the actual parameter is less
than the maximum length of the formal parameter, it is possible for
the procedure or function to alter bytes of data that are beyond the
end of the actual parameter variable. This does not cause a run—-time
error, but does cause unpredictable results.

THE “SWAPPING” OPTION

With the S+ option of the Compiler, the extra space available for

symbol-table storage 1s about 5300 words (compared to about 39¢¢ in
the previous version). Going from S+ to S+ gives about 15@f words
more.

STRINGS

The manual for Version 1.l states (on page 9) that one string is
"greater than" another 1f 1t would come first in an alphabetic list of
strings. This is backwards: it should state that one string 1s "less
than" another 1f it would come first in an alphabetic list of

strings.

6 LANGUAGE REFERENCE ADDENDUM

e p——— -

TURTLEGRAPHICS

The system will automatically return to text mode if a program
terminates while in graphics mode. This applies to both normal
termination and to a halt caused by a run-time error.

Also, the manual erronecusly states that the TURTLEGRAPHICS procedures
will accept REAL parameters for X,Y coordinates, and convert them to
INTEGER values. Actually, X,Y coordinates are parameters of type
INTEGER and 1f a REAL value is supplied an error results.

ERROR MESSAGES

The following new compiler error messages have been added:

175: Actual parameter max string length < var formal max
length

40B: (*55+4*) Needed to compile units

MEMORY SPACE FOR COMPILER

When compiling a very large program, it is possible for the compiler
to run out of memory space. There are several remedies to try when
this happens:

Use the command-level swapping option to get 1100 words of additional
memory space.

Use the compiler swapping optionm (*$S+*) or if necessary, (*§5++*),

If the program uses "include" files, use the Filer‘s M(ake command to
create a 4-block file named SYSTEM.SWAPDISK on the same diskette that
contains the Compiler. This allows a segment of the compller to be
swapped out onto the diskette before the operating system segment that
opens files is swapped in.

With include files, it also helps to have the (*5I filename*)} option
in the declaration section of a procedure (before the BEGIN of the

LANGUAGE REFERENCE ADDENDUM 7

procedure body). This only helps if the compiler swapping option is
on and there is a SYSTEM.SWAPDISK file. 1In the declaration section of
a procedure 1s where the largest section of the compiler can be
swapped out to make room for the operating system segment that opens
files.

FILE SPACE FOR COMPILER

In Version l.l, when the code file is automatically sent to the
workfile the default size for the file is [*]. 1In all other cases,
the default size is [@], which means that the code file will be
allocated all of the largest space available on the diskette that it
is sent to. If there is only one available space on the diskette, the
code file takes all of it.

This can cause problems 1f the code file 1s on the same diskette used
for the listing file. The Compiler will fail if it trles to create a
listing file and the code file has taken all the available space on
the specified diskette.

If you run into these problems, specify a different diskette for the

code file or the listing file, or specify a definite length for the
code file that will leave enough room for other required files.

PROGRAM SEGMENTATION

The information in this section {s not needed for simple programs, but
can be cruclal for programs that are large or complex. This section
supplements the information in Chapters & and 5 of the Apple Pascal
Language Reference Manual. 1Tt also describes a new Compiler optien,
the "Next Segment" option, which is not deseribed in the manual.

Te make the most efficient use of the memory space avallable for
program code and data, programs can be divided into segments. This

section gives essential information on how the Pascal System
{mplements segmentation.

SEGMENTS

A segment is code that can be loaded into memory and executed, without
any other code necessarily being in memory at the same time. Every
program consists of at least one segment, and some programs consist of

8 LANGUAGE REFERENCE ADDENDUM

many segments. Whenever a program 1s compiled, the Compiler and
Linker create the following segments in the code file:

- Each SEGMENT procedure or functlon becomes a segment in the
code file.

- Each Regular UNIT that the program uses becomes a segment in
the code file.

= The program itself becomes a segment in the code file. This
includes the program’s non-SEGMENT procedures and
functions.

Similarly, whenever a Regular UNIT is compiled, the result is a code
segment for the UNIT itself, plus an additional segment for each
Regular UNIT that is used within the UNIT being compiled. (Note that
SEGMENT procedures and functions are not allowed inside UNITs.)

When an Intrinsic UNIT is compiled, it produces a code segment, and
may produce a data segment as well. (Note that an Intrinsic UNIT
cannot USE a Regular UNIT.)

Note that segments do not nest —-- every segment is just one segment
and does not contaln any other segments. For example, Lf a SEGMENT
procedure contains another SEGMENT procedure, the result is two
distinct code segments.

THE SEGMENT DICTIONARY

Every code file (including library files) contains informatfon called
a segment dictionary. This contains an entry for each segment in the

code file; the entry has all the information the system needs to load
and execute the segment.

The segment dictionmary has slots for 16 entries. Therefore, one code
file can contain at most 16 segments. In the case of a program, this
implies one segment for the program itself, one for each SEGMENT
procedure or function, and cne for each Regular UNIT used by the
program.

Note that Intrinsic UNITs used by a program do not require entries in
the segment dictionary of the program’s code file. This is because an
Intrinsic UNIT’s code segment is never in the program’s code file —--
it is in a library file, and appears in the library file's segment
dictionary.

LANGUAGE REFERENCE ADDENDUM 9

Therefore a program can have a maximum of 16 segments, not counting
segments from Intrinsic UNITs. Counting segments from Intrinsic
UNITs, a program can have up to 26 segments as explained below.

THE RUN-TIME SEGMENT TABLE

When a program is executed, the Pascal Interpreter uses a segment
table which contains an entry for each segment that is used in
executing the program. This table thus contains the following
entries:

= Entries for 6 segments that the system uses when executing a
user program

- An entry for each segment in the segment dictionary of the
program’s code file

- An entry for each Intrinsic UNIT segment (both data and code
segments).

The segment table has slots for up to 32 entries. Since the system
uses 6, this means that a program can have up to 26 segments
altogether. Remember that only 16 can be in the program’s code filej
any excess over 16 must be Intrinsic UNIT segments.

SEGMENT NUMBERS

Every segment has a segment number in the range @..31. At tun time,
no two segments in the segment table can have the same number, since
the numbers are used to index the table. A segment number 1s assigned
to a program segment when the segment’s entry is placed in the code
file‘s segment dictionary (before run time). MNumbers are assigned as
follows:

= The program 1itself is Segment l.
- The segments used by the system are § and 2..6.

= The segment number of an Intrinsic UNIT segment is
determined by the UNIT’s heading, when the Intrinsic UNIT is
compiled. (These numbers can be found by examining the
segment dictionary of the SYSTEM.LIBRARY file with the
LIBMAP utility program.)

— The segment numbers of Regular UNIT segments and of SEGMENT
procedures and functions are automatically assigned by the

10 LANGUAGE REFERENCE ADDENDUM

system; they begin at 7 and ascend. Note that after a
Regular UNIT is linked into a program, it may not have the
same segment number shown for it in the library’s segment
dictionary when the library is examined with LIBMAP.

To summarize the above, the segment numbers of the program itself, the
segments used by the system, and any Intrinsic UNITs used by the
program are fixed before the program is compiled; the segment numbers
of Regular UNITs and of SEGMENT procedures and functions are not
fixed, and are assigned as the program is compiled and linked, in
ascending sequence beginning with 7.

Normally, the only time you need to specify segment numbers is in
writing an Intrinsiec UNIT. You should choose segment numbers that
will not conflict with any of the fixed numbers #..6 or with any other
Intrinsic UNIT that might be used in the same program as the UNIT you
are writing.

Intrinsic UNIT segment numbers should also avold conflict with numbers
that might be assigned automatically to Regular UNITs and SEGMENT
procedures. However, when unavoidable conflicts arise there 1is a
solution: the new version of the Compiler has a "Next Segment" option
which can specify the next automatically assigned segment number.

This 1s explained below.

THE “NEXT SEGMENT" OPTION

This is a new Compiler option which allows you to specify the segment
number of the next Regular UNIT, SEGMENT procedure, or SEGMENT
function encountered by the Compller. By default, the segment number
is assigned automatically as described above.

(*SNS num*) Sets the next segment number to num, where
num 1s an integer in the range 1..3@.

The NS option is ignored i1f it precedes the program heading; this
means that it cannot be used to specify the segment number of the
program itself.

The NS option will only work if the specified number is greater than
the "default" number that would be automatically assigned. If the
number specified in the NS option is less than or equal to the default
segment number, the option is ignored. Also, the NS option will not

work 1f the specified number is greater than 3§ (segment number 31 can
only be used for an Intrinsie UNIT).

LANGUAGE REFERENCE ADDENDUM 11

For example, suppose that you want to use an Intrinsic UNIT named
ZEBRA, whose code segment number is 7 and whose data segment number is
8. (Normally, such numbers should be avoided in writing Intrinsic
UNITs.} Your program also contains a SEGMENT procedure:

PROGRAM ELEPHANT;
USES ZEBRA;

SEGMENT PROCEDURE HORSE;

LR

The Compiler will automatically compile the HORSE procedure as segment
number 7, and when you try to execute the program the Interpreter will
halt with an error message because the program has two different
segments with the number 7. There are two remedies: recompile ZEBRA
with different segment numbers (i1f you have the source for ZEBRA) or
use the NS option in your program:

PROGRAM ELEPHANT;

USES ZEBRA;

(*5NS 9*)

SEGMENT PROCEDURE HORSE;

DR

Now HORSE will become segment 9 instead of segment 7, and the conflict
is avolded.

LOADING OF SEGMENT PROCEDURES AND FUNCTIONS

Normally, the code of a SEGMENT procedure or function is in memory
only while it is active; that is, it is loaded from diskette each time
the procedure or function is called, and unloaded as soon as it
finishes executing. The following program illustrates this:

PROGRAM ONE; (*Segment ONE is always in memory.*)

SEGMENT PROCEDURE ALPHA; (*In memory only when active.*)
BEGIN

END;

12 |LANGUAGE REFERENCE ADDENDUM

SEGMENT PROCEDURE BRAVO; (*In memory only when active.*)
SEGMENT PROCEDURE CHARLIE; (*In memory only when active.*)
BEGIN (*Body of CHARLIE*)
ALPHA; (*When this is executed, the segments in
memory are ONE, ALPHA, BRAVO, and CHARLIE.*)
END;
BEGIN (*Body of BRAVO*)
CHARLIE; (*When this starts executing, the segments in
memory are ONE, BRAVO, and CHARLIE.*)
ALPHA; (*When this is executed, the segments in
memory are ONE, BRAVO, and ALPHA.*)

END;

BEGIN (*Body of ONE*)
ALPHA; (*When this is executed, the segments in
memory are ONE and ALPHA.*)
BRAVD; (*When this starts executing, the segments in
memory are ONE and BRAVO.*)

e

END.

The "Resident" option can be used to alter this, as explained below.

LOADING OF UNIT SEGMENTS

Normally, all segments of UNITs used by a program are loaded
automatically before the program begins executing, and remain in
memory throughout program execution. For example, consider the
following program where DELTA and GAMMA are two UNITs, either Regular
or Intrinsic:

PROGRAM TWO
USES DELTA, GAMMA;
BEGIN

END.

Throughout program execution, the segments in memory are TWO, DELTA,
and GAMMA. This can be altered by the "Noload" option, as explained
below.

LANGUAGE REFERENCE ADDENDUM 13

THE “NOLOAD™ OPTION

The "Noload" optiom, (*$N+*), is described in Chapter 4 of the Apple
Pascal Language Reference Manual; this section explains its usage.

The (*$N+*) option 1s placed at the beginning of the main program body
(after the BEGIN). It causes all UNIT segments to be handled in the
same way as SEGMENT procedures, during program execution. With this
option a UNIT segment is in memory only when something in its
INTERFACE part is referenced by the program.

The (*$N+*) option does not prevent the inftialization part of a UNIT
from being loaded and executed before program execution; but after
initialization the UNIT segment 1s unloaded until it 1is activated.

Consider the following program, where HUGEPROC is a large procedure
and BIGUNIT is a large UNIT. The system does not have enough’ memory
to hold HUGEPROC and BIGUNIT at the same time, along with the program
itself.

PROGRAM THREE;
USES BIGUNIT;

SEGMENT PROCEDURE HUGEPROC;
BEGIN

TR

END;

BEGIN
(*3N+*) (*Keeps BIGUNIT out of memory until needed.*)
HUGEPROC ;
CALCULATE; (*A procedure in BIGUNIT*)
HUGEFROC
END.

First HUGEPROC is called; BIGUNIT is not in memory because of the
(*SN+*) option. When CALCULATE is called, HUGEFROC is not in memory
since {t 18 a SEGMENT procedure. As socon as no part of BIGUNIT {is
active, it 1s again swapped out of memory, and HUGEPROC can be called
again.

14 LANGUAGE REFERENCE ADDENDUM

THE "“RESIDENT" OPTION

The "Resident" option is described in Chapter & of the Apple Pascal
Language Reference Manual; this section explains its usage.

The "Resident" option i{s placed at the beginning of the body of a
procedure or function (after the BEGIN). It alters the handling of
segments that would otherwise be Iin memory only when active: that 1is,
SEGMENT procedures and functions, and UNITs under the "Noload"

option. When such a segment is named in the "Reslident" option, it is
immediately loaded into memory and remains there as long as the
procedure or function containing the "Resident" option is active. For
example, consider the following program:

PROGRAM FOUR;
USES BIGUNIT;

SEGMENT PROCEDURE HUGEPROC;
BEGIN

END;

PROCEDURE CALLHUGEPROC;
VAR I: INTEGER;
BEGIN
FOR I:=1 TO 1@@ DO HUGEPROC
END;

PROCEDURE CALLCALCULATE;
VAR I: INTEGER;
BEGIN
FOR I:=1 TO 1@ DO CALCULATE (*A procedure in BIGUNIT*)
END;

BEGIN
(*SN+*) (*Keeps BIGUNIT out of memory until needed.*)
HUGEPROC;
CALCULATE;
CALLHUGEPROC;
CALLCALCULATE
END.

LANGUAGE REFERENCE ADDENDUM 15

This resembles the previous example, but the CALLHUGEPROC and
CALLCALCULATE procedures are new. As written, these two procedures
have a problem: since HUGEPROC is a SEGMENT procedure, it will be
swapped in from diskette 1(@ times when CALLHUGEPROC executes, and
because of the (*$N+*) option in the main program body, BIGUNIT will
be swapped in 10 times when CALLCALCULATE executes. This is
obviously undesirable, and it can be prevented by using the "Resident"
option in each of these procedures:

PROCEDURE CALLHUGEPROC;
VAR I: INTEGER;
BEGIN
(*SR HUGEPROC*)
FOR I:=1 TO 1@¢) DO HUGEPROC
END;

PROCEDURE CALLCALCULATE;
VAR I: INTEGER;
BEGIN
(*SR BIGUNIT*)
FOR I:=1 TO 1f@ DO CALCULATE (*A procedure in BIGUNIT*)
END;

Now HUGEPROC will be kept in memory as long as CALLHUGEPROC is active,

and BIGUNIT will be kept in memory as long as CALLCALCULATE 1is
active.

Finally, note that the "Resident" option can be applied to more than
one segment, by separating the names of segments with commas as in the

following example:
(*$R ALPHA, BETA,GAMMA*)
where ALPHA, BETA, and GAMMA are names of segments (UNITs, SEGMENT

procedures, or SEGMENT functions). The option shown would make all
three segments resident in the procedure containing the option.

16 LANGUAGE REFERENCE ADDENDUM

